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Abstract: Effective forest management is essential for mitigating climate change effects. This is why
understanding forest growth dynamics is critical for its sustainable management. Thus, characterizing
forest plot deadwood levels is vital for understanding forest dynamics, and for assessments of
biomass, carbon stock, and biodiversity. For the first time, this study used the leaf area index (LAI)
and L-moments to characterize and model forest plot deadwood levels in the Bavarian Forest National
Park from airborne laser scanning (ALS) data. This study proposes methods that can be tested for
forests, especially those in temperate climates with frequent cloud coverage and limited access. The
proposed method is practically significant for effective planning and management of forest resources.
First, plot decay levels were characterized based on their canopy leaf area density (LAD). Then, the
deadwood levels were modeled to assess the relationships between the vegetation area index (VAI),
gap fraction (GF), and the third L-moment ratio (T3). Finally, we tested the rule-based methods
for classifying plot decay levels based on their biophysical structures. Our results per the LAD
vertical profiles clearly showed the declining levels of decay from Level 1 to 5. Our findings from the
models indicate that at a 95% confidence interval, 96% of the variation in GF was explained by the
VAI with a significant negative association (VAIslope = −0.047; R2 = 0.96; (p < 0.001)), while the VAI
explained 92% of the variation in T3 with a significant negative association (VAIslope = −0.50; R2 = 0.92;
(p < 0.001)). Testing the rule-based methods, we found that the first rule (Lcv = 0.5) classified Levels 1
and 2 at (Lcv < 0.5) against Levels 3 to 5 at (Lcv > 0.5). However, the second rule (Lskew = 0) classified
Level 1 (healthy plots) as closed canopy areas (Lskew < 0) against Levels 2 to 5 (deadwood) as open
canopy areas (Lskew > 0). This approach is simple and more convenient for forest managers to exploit
for mapping large forest gap areas for planning and managing forest resources for improved and
effective forest management.

Keywords: plot decay levels; ALS metrics; leaf area index; leaf area density; L-moments; forest
management; deadwood

1. Introduction

Forests are a fundamental section of natural ecosystems that all living organisms de-
pend on. Consequently, its management and maintenance are critical for living organisms’
survival and the environment at large. Especially in the era of global warming, winning
the battle against climate change is most likely to be impossible without healthy forest
ecosystems. Thus, understanding the declining state of the forest is very important to be
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able to revive its growth through appropriate management. This is why characterizing and
evaluating forest decay levels and deadwood is important for understanding forest growth
dynamics, and for assessing biomass, carbon storage, and biodiversity.

The Bavarian Forest National Park (BFNP), in Germany, is a natural temperate forest
dominated by conifer species, especially the Norway spruce (more details about this forest
are given in Section 2.1). This forest has been disturbed over the years by windthrow and
bark beetle (Ips typographus) insect infestations [1,2]. This disturbance decline [3,4] resulted
in the death of old trees, which further declined (decay levels) from their death to snags.
Trees after their death go through successional decomposition stages from defoliation, twig,
and branch reduction to snags and total collapse at a very slow rate [3]. Early studies in the
1970s and before qualitatively characterize tree decomposition stages and dynamics [3,4].
Thomas [4], for instance, displayed a visual conceptual classification of decay stages from a
healthy tree to a stump in nine stages. Most of these characterizations in the past used the
traditional approach for assessing and characterizing forest decay levels and deadwood,
which is normally through field measurements and assessments. However, aside from
its labor intensiveness and time-consuming factor, forest field measurement comes with
several difficulties and challenges including the risk of accidents, despite its effectiveness,
especially at the single tree level. This, coupled with the lack of access to some parts of
the forest due to obstacles (e.g., flood) or the undulating nature of the terrain, makes it
inconvenient and unsustainable, especially for larger forest areas. Thus, characterizing and
estimating the decay levels using a cost-effective approach are needed for improved and
sustainable forest management.

Thankfully, advancement in remote sensing technologies has brought some relief
to the traditional approach of forest mensuration and management leveraging time and
cost. This further comes with mapping larger areas without necessarily needing physical
presence in the forest [5]. For the past decades, researchers have extensively used passive
and active sensors as well as a combination of both for monitoring and tracking forest
health and growth dynamics toward its effective management [6–11]. While other sensors
capture only a 2D view (imagery) of forests, Light Detection and Ranging (LiDAR) [12–14]
can capture the 3D structural view of forests with higher resolution and accuracy, making
it indispensable for forestry applications. LiDAR has a scanning mechanism for emitting
pulses of laser light with a wavelength in the near infrared (NIR) range from a platform
(mostly either via airborne laser scanning (ALS), unmanned aerial vehicles (UAV), or
terrestrial laser scanning (TLS)) to targeted trees in the forest [12]. These pulses, after hitting
the forest, return pulse signals in the form of continuous waves (full-waveform) [15] or
discrete returns [16] corresponding to the forest structure in the form of 3D point clouds.
Furthermore, contrary to other sensors, LiDAR’s ability to penetrate through spaces in
tree canopies and forest gaps makes it extraordinarily special for forest mensuration and
assessments, as it captures the sub-canopy and topography as well [17].

Another challenge in forest research is the need for field data for the validation of
remote sensing data. However, it is equally important to acknowledge the circumstances
where acquiring field data could be impossible, especially in natural forests, due to several
factors and obstacles that render parts of the forest physically inaccessible. Notwithstand-
ing, data could be acquired through remote sensing. In such situations, forest remote
sensing experts can assist with their field experience to visually interpret remote sensing
data for research to prevail using sound-tested techniques without field data. LiDAR
point cloud attributes and metrics have been proven to describe forest structure better and
independently in 3D. The significance of LiDAR metrics in forest structural estimation and
analysis has been reported [18–21]. Thus, the strength of LiDAR can be relied upon for
characterizing forest plot decay levels without field data, although it is always good to
have a ground reference.

The subject of tree decomposition using remote sensing technologies, despite its great
importance to forest managers in the assessment of biodiversity, carbon storage/sequestration,
and forest health in general, has so far received very little attention. Recently, in their assess-
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ment of habitat quality using multispectral imagery (Worldview-2 with panchromatic and
8 bands), Soto et al. [22] reported the relationship between the plant senescence reflectance
index (PSRI) and wood decay stages resulting from woodpeckers with pixel-based image
analysis. Putman et al. [23] studied the changes in standing dead trees (SDTs) at various de-
cay levels over time based on volume estimates using multi-temporal TLS data. In a related
study more recently, Klockow et al. [24] also studied the structural changes in SDT at differ-
ent decay stages based on an allometric relationship of volume estimates and confirmed
the efficiency of using TLS data for such a task. While these recent studies reaffirm the
necessity of considering both the horizontal and vertical dimensions of trees in estimating
and assessing forest decomposition, the consideration of LAI/LAD and gap fraction (GF) in
assessing forest decomposition has received little or no attention. Researchers have defined
LAI as the hemispherical surface area of a leaf per unit of the ground area [25,26], while
LAD was defined as the per unit volume of the total amount of leaf area [27]. Thus, LAI
can be derived from the LAD vertical profile [28,29]. Generally, while canopy GF serves as
a variant for calculating LAI [30–32], the LAI/LAD has been used to quantify and estimate
canopy volume and its vertical structure from varied remote sensors in direct and indirect
approaches [27,30,33–35]. However, to the best of our knowledge, there has not been any
work that considered the LAI/LAD approach in characterizing and estimating forest plot
decay levels, which this study seeks to achieve.

In this study, we hypothesize that trees at various decay levels biophysically change
in size and structure, which are often due to defoliation, twigs/branch reduction, and/or
shrinkage. This change in size and structure describes the pattern of forest plots according to
their decay levels and determines the amount of light intensity that can reach sub-canopies
within the forest area. Consequently, in contrast to the optical sensors, ALS [19,36–38] has the
potential to estimate forest canopy attributes and derive tree biophysical parameters such as
LAI/LAD and GF with higher accuracy [17,39]. We equally hypothesize that the L-moments
(Section 2.6) are equally significant in estimating and characterizing forest plot decay
levels from ALS height returns without field data. Thus, in estimating and characterizing
five forest plot decay levels (Levels 1 to 5), we evaluate the mutual relationship between
the L-moment ratio, LAI/LAD, and its properties (vegetation area index (VAI) and GF)
from ALS data. Furthermore, we test the rule-based methods to assess how they classify
our decay levels. Therefore, the objectives for the study are as follows:

1. To characterize forest plots decay levels based on LAI/LAD vertical profile from
ALS data.

2. To mutually evaluate the relationships between VAI, GF, and L-moment ratios on the
decay levels.

3. To characterize and model the decay levels based on the relationships between the
VAI, GF, and L-moment ratios.

4. To test the rule-based methods in classifying the forest plot decay levels.

2. Materials and Methods
2.1. Study Area

Our study area is in the BFNP (Figure 1), a 242.5 square km natural forest in the south-
eastern part of Germany that shares a boundary with the Czech Republic at 49.10 degrees
north, and 13.22 degrees east. Being the oldest established park since the 1970s, the goal
was to prevent human interference in the forest to enable the protection of its natural
processes [2,40]. For this reason, although the forest witnessed strong thunderstorms in the
1980s and a subsequent bark beetle (Ips typographus) infestation in the 1990s [1], it had just
about a 22% mortality rate by the year 2009 [41]. The conifer-dominated forest has a rough
terrain with elevations between 600 and 1453 m, making it difficult to physically access
some areas for field measurements, hence the need for remote sensing measurements and
techniques like the ALS [2]. The Norway spruce (Picea abies) dominates the forest species
followed by European beech (Fagus sylvatica), European silver fir (Abies alba), and other
spruce species [42].
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selected plots (red).

2.2. Data Acquisition and Pre-Processing

The point cloud data used in this study were acquired on 18 August 2016, using a
Riegl LMS-Q680i-400 kHz scanner (ALS) at an altitude of 300 m above sea level. These data
were acquired in three transects in 1000 by 1000 m tiles, covering a 13.5 square km area of
the BFNP with total raw points of 5.51 billion at a sampling rate of greater than 70 points
per square meter. The flight was conducted by Milan Geoservice GmbH who pre-processed
the raw data and corrected it with reference to the WGS84/UTM and transformed it to
fit the Gauss–Kruger coordinate system (EPSG = 31468; DHDN 3-Degree Gauss zone 4).
Then, it was finally formatted to LAZ 1.2. This data acquisition was part of the BFNP
administration project for the Bohemian Forest Ecosystem [43,44]. The plots considered for
this study were extracted from these data (Figure 1).

The color infrared (CIR) imagery used to support selecting plots of decay levels 1–5
(Figure 2) was acquired on 23 June 2016 using a DMC 122 camera onboard a Cessna 207
aircraft during a flight campaign over the entire BFNP at an average altitude of 2918 m
above mean sea level [2,44]. With three spectral bands (near infrared, red, and green),
the images were radiometrically corrected and orthorectified based on optimal camera
calibration observations, transformation parameters, and ground control points. This was
realized using the Trimble/INPHO company’s program system OrthoBox (Orthovista,
Orthomaster). The ground resolution of the imagery was 20 cm.
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clouds and CIR imagery viewing from above the canopies. The healthy trees are reddish to brown
while the dead trees are gray/dark gray to green in color.

2.3. Plot Selection

Forest experts, based on previous field experiences, guided the selection of five main
plots (30 m radius; Figure 2) with trees of decay from Level 1 to Level 5 (as described in
Wong et al. [44], which was inspired by Thomas’ description [4]). All plots were selected
from mature forest stands. Level 1 plots consisted of totally healthy trees with no traces
of decay. Leaves and branches were thickly covered in larger quantities with closed
canopies. When viewed from the CIR imagery, the trees were spectrally identified via their
colors (reddish to brownish). Level 2 plots consisted of early dead trees. These trees had
biophysically changed in color (gray to green, from the CIR imagery) and with slight or no
defoliation. The Level 3 plots also consisted of SDTs, which could be identified by their
biophysical change in colors (gray to green) with more foliage and branch reduction than in
Level 2. Some treetops were broken but the roots were firm in the ground. Level 4 consisted
of heavily defoliated trees with several broken twigs and branches. Most of the treetops
were broken while fast changing into snags. Traces of fallen tree logs were also seen on the
ground, resulting in larger gaps between trees. The trees biophysically changed to dark
gray in color. Snags dominated the Level 5 plots; almost all the tree branches were lost,
and treetops were broken. These plots were full of deadwood; some were broken to the
mid-stem level, and even beyond. Traces of fallen logs were also seen in this plot. This
selection was based on visual inspections and interpretations of the ALS point clouds with
their corresponding CIR images. Figure 2 shows the five plot decay levels resulting from
a fusion of ALS and corresponding CIR imagery (CIR imagery was only used to support
data extraction) using the Quick Terrain Modeler tool. After that, for each of these five
main plots, five more sub-plots were created at radii of 5, 10, 15, 20, and 25 m, from the
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plots’ center, resulting in a total number of 30 plots (each decay level having six plots with
a radius of 5, 10, 15, 20, 25, and 30 m; a schematic diagram is shown in Figure 3).
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Figure 3. Schematic illustration of the sub-plot (concentric circles in short dashes) creation for each
decay level (not drawn to scale).

2.4. Point Cloud Post-Processing

After clipping the point cloud for all selected plots, the ground points were classified
using the cloth simulation function (CSF) algorithm [45]. This algorithm was considered
because it demonstrated robustness on 15 samples of the ISPSR benchmark datasets with
impressive accuracy. Moreover, fewer parameters were required regardless of the terrain
complexity, which makes it convenient, especially for the nature of our terrain. Then,
digital terrain models (DTMs) were created for each plot using the Kriging algorithm,
which works in combination with the k-nearest neighbor (KNN). This algorithm was one
of the most advanced for spatial data interpolation. This algorithm was considered because
the processing was done on plot bases, making it manageable; otherwise, it would have
been slow for larger areas due to complex computation demands, albeit with promising
results. Next, the point heights were normalized with reference to the created DTMs.
Finally, canopy height models (CHMs) were derived based on the Delaunay triangulation
network approach at 0.5 m resolutions. Point clouds for the five main plots (30 m radius
plots) were clipped and extracted using the LiDAR360 tool v5.2 (GreenValley International)
while the remainder of the entire point cloud processing was done using the R-package
lidR v4.0.3 [46] and the R project for statistical computing (v4.3.0). Table 1 presents some
geometric ALS metrics for understanding the vertical distributions of point clouds for each
of the main plots. Figure 4 illustrates the general methodology.

Table 1. Vertical distribution of the point clouds for each plot based on geometric ALS metrics.

Decay Level No. of Points Ground Points (%) Hmean (m) Points above
Hmean (%) Hmax (m) SD

L130 285,919 11.8 21.3 62.1 41.9 10.6
L230 405,106 12.8 12.2 48.1 36.4 9.26
L330 597,143 21.6 10.9 49.7 34.2 9.1
L430 390,399 66.5 3.66 29.3 28.9 6.15
L530 157,362 88.5 0.673 9.49 20.9 2.71

Hmean = mean heights of the point clouds; Hmax = maximum heights of point clouds.
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2.5. ALS Derived LAI/LAD

Using ALS point cloud-based data is one of the indirect approaches for measuring
LAI [47], which is theoretically based on the Beer–Lambert law [47–49]. The canopy GF is
an important variant used to derive LAI due to their close relationship with respect to a
zenith angle as expressed in the Beer–Lambert law (Equation (1)) [48,49].

GF(θ) = e−G(θ)×LAI/cos (θ), (1)

where GF(θ) represents the canopy gap fraction at a particular zenith angle θ, while G(θ)
is the G-function of Ross Nilson [50–52], which denotes the fraction of a unit foliage area
projected onto a perpendicular plane in the zenith direction θ. From Equation (1), we can
express LAI as

LAI = −cos(θ)
G(θ)

ln GF(θ) (2)
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LAI can be estimated using the LiDAR penetration index (LPI) with the ALS discrete
return point cloud. This is based on the concept of light transmission and its attenuation
through forest canopies. Light transmission through canopies attenuates depending on
how dense the canopies are and their spatial distribution in the forest [53]. Thus, based
on the LPI, the LAI can be estimated from the Beer–Lambert law of light extinction by
estimating the fraction of light transmitted through the canopies (I/I0) with the LiDAR
intensity, as expressed in Equation (3) [54–57].

LAI = −1
k

ln
(

I
I0

)
, (3)

where I is the light intensity below the canopy, while I0 is the total light intensity above the
canopy before its penetration, and k represents the extinction coefficient. Thus, the LAI at
canopy depth z (LAIz) can be expressed as [37]:

LAIZ = −1
k

ln
(

Iz

I0

)
, (4)

where Iz is the light intensity transmitted through the canopy at depth z. The term (Iz/I0)
represents the fraction of light transmitted through the canopy at depth z, which is equiv-
alent to the canopy GFz, from the top of the canopy to a depth z, below the canopy. This
is derived from the LPI with reference to the point cloud number of returns; estimated as
the ratio of the number of returns at a particular depth z below the canopy (or number
of ground returns, if z is the ground) to the total number of returns [31,37,58]. Therefore,
substituting GFz into Equation (4) results in:

LAIZ = −1
k

ln(GFZ), (5)

where
GFZ =

RZ
Rtotal

, (6)

where Rz is the number of returns at a particular height z below the canopies, while Rtotal
is the total number of returns. If z is the ground, then the Rz becomes the total number of
ground returns.

The estimation of the extinction coefficient k in comparative studies of direct measure-
ments of LAI (field-based, using hemispherical photographs) with the light transmission
approaches (LiDAR-based) has established that k is determined based on some factors like
the radiation direction, the distribution of the leaf angles, and the canopy structure [59]. Re-
search in the past years has narrated different values for the extinction coefficient, ranging
from 0.28 to 0.67, from different forest types (both deciduous and coniferous) [37,59–61].
Aubin et al. [62], for example, reported extinction coefficients for different types of forest,
strata, vegetation, and canopy cover percentages in the upper stratum, and for general use.
It has been established that an extinction coefficient of approximately k = 0.5 can be used
conveniently for canopies with spherical leaf inclination angle distribution [60,63]. Richard-
son et al. [55] reported approximate extinction coefficient values between 0.45 and 0.52
at a 95% confidence interval for a mixed coniferous-dominated forest. This corroborates
the findings of Aubin et al. [62], who recommended 0.52 as the extinction coefficient for
closed conifer forests. Previous research has also sanctioned the convenience assumption
of spherical leaf angle distribution [64,65]. Consequently, the extinction coefficient for
assuming spherical leaf angle and random foliage distribution has been widely used for
calculating LAI/LAD [64,66]. Thus, in this study, we equally used k = 0.5 in deriving the
LAI/LAD and GF for each decay level above 3 m heights (i.e., points from the ground
to 3 m heights were not involved in the estimation) with 2 m height intervals (i.e., from
the 3 m height, the trees were vertically partitioned into 2 m thickness until the maximum
height in the plot) using Equation (5) [37]. Then, we analyzed the vertical profiles of the
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canopies in the selected plots to assess and characterize the decay levels. The relationship
between LAI and LAD is expressed in Equation (7) [67,68].

LAIZ =

hmax∫
hmin

LADZdz =
hmax

∑
hmin

LADZ (7)

where hmin represents the minimum tree height, and hmax represents the maximum tree height.

2.6. ALS-Derived L-Moments

L-moments and L-moment ratios, as an alternative to the conventional moments, are
sets of statistically derived metrics based on linear combinations of order statistics that are
less subject to bias and very reliable even at a small sample size, which sometimes provide
even more accurate estimates than the maximum likelihood estimates [69,70]. For a random
variable X with a cumulative distribution function F(x) and quantile function x(F), a sample
order statistic of a random sample size r, Xk:r, can be drawn from the distribution of X [71].
Thus, L-moments of X are based on their expected values E(Xk:r). Therefore, the first,
second, and third L-moments can be expressed as in Equations (8)–(10), respectively [69,70]:

L1 = EX =

1∫
0

x(F)dF (8)

L2 =
1
2

E(X2:2 − X1:2) =

1∫
0

x(F)(2F − 1)dF (9)

L3 =
1
3

E(X3:3 − 2X2:3 + X1:3) =

1∫
0

x(F)(6 F2 − 6F + 1)dF (10)

Thus, for ALS-based forest structural estimations with L-moments, X represents the
ALS height distributions of trees in the forest. Valbuena et al. [71] showed that the L-
coefficient of variation (Lcv), which is equivalent to the Gini coefficient (GC), and the
L-Skewness (Lskew) are types of the L-moment ratios, such that:

Lcv = GC =
L2
L1

(11)

and
Lskew =

L3
L2

(12)

With these L-moment properties, they proposed two rule-based methods, Lcv = 0.5
(this threshold was considered because it represents the maximum entropy of tree sizes [72])
and Lskew = 0, for detecting tree size discrimination and light availability based on acquired
ALS height returns. While the L-moments ratios are used for modeling forest plot decay
levels, the proposed rules are also tested for classifying forest plot decay levels.

2.7. Relationships between the L-Moment Ratios, Vegetation Area Index, and Gap Fraction in
Modeling Plot Decay Levels

We mutually evaluated the relationship between the VAI, GF, and L-moments in
characterizing and modeling forest plot decay levels from ALS height returns. The VAI for
each decay level was calculated by summating the LAI (all 2 m thickness) for each plot.
Similarly, we calculated the average GFs for each plot. Bivariate linear regression models
were built to mutually evaluate the relationship between VAI, GF, and L-moment properties
in characterizing forest plot decay levels from ALS height returns. Through scatter plots
of the plot decay levels 1–5, two models, regression of GF on VAI, and regression of the
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third L-moment ratio (T3) on VAI, were described using Equation (13), to assess the trend
of decay levels and relationships with the VAI, GF, and the L-moment ratios.

Y = β0 + β1X + δ (13)

where β0 represents the intercept of the best-fit line, β1 represents the slope of the best-fit
line, and δ is the residual. The model’s coefficients (intercept and slope) were derived
from the best-fit line through the scatter plots of decay levels. Further, the coefficient
of determination (R2) was calculated and adjusted to assess the variation in proportion
explained by the models. The estimations were observed at a 95% confidence interval.

2.8. Testing the Rule-Based Method for Classifying Plot Decay Levels from ALS Height Returns

We further tested the rule-based method to ascertain its veracity in classifying plot
decay levels. Thus, we applied the two rules (Lcv = 0.5, and Lskew = 0) proposed by
Valbuena et al. [71] with the same threshold with the presumption that Lcv = 0.5 classifies
the plot decay levels into two groups (presumably Level 1 against other levels) due to varia-
tions in plot pattern and canopy sizes, while Lskew = 0 classifies two groups of decay levels
based on the amount of light intensity that could reach sub-canopy levels (presumably
Level 1 against other levels). As Lskew = 0 describes the symmetry of the ALS height distri-
bution, Lskew > 0 should represent areas where light could easily reach sub-canopies, while
Lskew < 0 should represent areas of closed canopies, where most ALS light pulses are
backscattered by upper canopies [73].

3. Results
3.1. Characterizing Plot Decay Levels by LAD Vertical Profile Estimates

Figure 5 shows the LAD vertical profiles of the 30 plots (at varied radii, 5–30 m) of
varying decay levels (Levels 1–5) from ALS height returns. Visual display of the LAD
profiles clearly shows the variations in plots according to their decay levels. Noticeably,
decay Level 1 (red) plots look more outstanding compared to other decay levels in all
plot sizes, albeit the 5 m radius plot slightly varies. The gaps between the profiles show
the variations in canopy heights, and area density. Furthermore, a close relationship is
seen between Level 2 and Level 3 (green and dark green respectively) in all but the 5 m
radius plots, indicating a slight decline from Level 2 to Level 3. Likewise, both levels show
spread towards the right at canopy heights 3–15 m of the vertical profile. However, this
observation is not the same for Levels 1, 4, and 5.

3.2. Relationship between VAI, GF, and L-Moment Ratios in Modeling Plot Decay Levels

Figure 6 illustrates the relationship between VAI and GF in modeling plot decay
levels from ALS height returns. Visually displayed in the figure is a scatter plot of decay
Level 1 (red), Level 2 (dark khaki), Level 3 (green), Level 4 (blue), and Level 5 (purple). A
bivariate regression line (black line), at a 95% confidence level (light gray), through the
decay levels indicates the existence of a linear model showing a consistent decrease in GF
while the VAI increases from decay Level 5 to Level 1. A total of 96% of the variation in
GF was explained by the VAI with a significant negative association (VAI (slope) = −0.047,
(p < 0.001)) reaching a coefficient determinant of R2 = 0.96. Table 2 shows the coefficients
and confidence intervals of the adjusted model.

Table 2. Coefficients and confidence interval of the regression of GF on VAI in modeling plot
decay levels.

Characteristic Beta 95% CI 1 p-Value

(Intercept) 0.9898 0.9852, 0.9944 <0.001
VAI slope −0.0468 −0.0504, −0.0431 <0.001

1 CI = confidence interval.
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Figure 7 displays the relationship between VAI and the third L-moment ratio, which
equals the L-skewness, (T3) in modeling plot decay levels from ALS height returns. The
scatter plot of decay from Level 1 (red) to Level 5 (purple) is visually displayed in the figure.
The bivariate regression (black line), at a 95% confidence level, through the decay levels
shows the existence of a linear model decreasing consistently in T3 as the VAI increases
from decay Level 5 to Level 1. In total, 92% of the variation in T3 was explained by the VAI
with a significant negative association (VAI (slope) = −0.50, (p < 0.001)) reaching a coefficient
determinant of R2 = 0.92. Table 3 shows the coefficients and confidence intervals of the
adjusted model.
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Table 3. Coefficients and confidence intervals of the regression of T3 on VAI in modeling plot
decay levels.

Characteristic Beta 95% CI 1 p-Value

(Intercept) 0.7939 0.7192, 0.8685 <0.001
VAI slope −0.5003 −0.5592, −0.4415 <0.001

1 CI = confidence interval.

3.3. Testing the Rule-Based Method for Classifying Plot Decay Levels

The two rules (Lcv = 0.5, and Lskew = 0) proposed by Valbuena et al. [71] were tested
to observe their effect in classifying forest plot decay levels from ALS heights returns. Both
rules, based on L-moments, represent thresholds that classify the plot decay levels into two
classes. Figure 8a displays the result of the first rule (Lcv = 0.5) seeking to demonstrate
the classification of decay levels by the threshold based on the variation in canopy size
and structure, while Figure 8b displays the result of the second rule (Lskew = 0) seeking to
demonstrate the classification of plot decay levels by the threshold based on the canopy
closure/density. From Equations (11) and (12), the rules become L2 = 1/2L1 and L3 = 0
respectively for the first and second rules. The short dashes represent the thresholds that
separate the decay levels into two classes. On one hand, from Figure 8a, it can be observed
that the threshold separates decay Levels 3, 4, and 5 at Lcv > 0.5 against the healthy and
early dead trees (Level 1 and 2 respectively at Lcv < 0.5), albeit two plots from Level 3 are
seen to veer off the threshold. On the other hand, Figure 8b shows clear discrimination
between decay Level 1 (healthy, at Lskew < 0) and all other levels (2–5, at Lskew > 0) from the
threshold, which represents the line of symmetry. It is equally worth noting the closeness
of Levels 2 and 3 in both rules.
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4. Discussion
4.1. ALS-Based LAD Vertical Profiles Characterize Plot Decay Levels

Over decades now, researchers and forest experts have used ALS to conduct numerous
forest and canopy cover investigations based on the estimation of LAI/LAD and GF [27,33,47].
While some of these studies have focused on the improvement in LAI/LAD estimation via
comparison of different sensors and approaches [34,55], others considered the estimation of
LAI/LAD for mapping canopy cover [31,66], defoliation, and canopy gap fractions [17,56,74].
However, to the best of our knowledge, no studies have considered the integration of
LAI/LAD in characterizing and modeling forest plot decay levels. Cognizant of the fact
that the declining and biophysical changes in forest plot decay would reveal the difference
between each of the decay levels, this study hypothesized, due to the penetration capability
of LiDAR, that ALS height returns could characterize and model forest plot decay levels.

We evaluated and characterized five decay levels (Figure 2 and Section 2.3) from the
BFNP by estimating the LAD vertical profiles for thirty plots of varying radii (5, 10, 15, 20, 25,
and 30 m). Each of the decay classes had six plots of varying radii (5–30 m). Findings from
the results show that ALS-derived LAD vertical profiles significantly characterize forest plot
decay levels (Figure 5). Evidently from Figure 5, decay Level 1 (consisting of healthy trees)
was outstanding compared to Levels 2–4, and this was consistent for all plots of varying
radii, albeit with a little difference for the 5m radius plot. The variation in LAD estimates
through the canopy heights equally confirms this. Although the difference between decay
Levels 2 and 3 could be seen, the findings also indicate that the decomposition rate between
the two was not much, as this could be realized by the close relationship in the LAD vertical
profiles. Interestingly, the lower parts of the profiles for both Levels (2 and 3) spread out at
canopy heights 3–15 m, indicating the existence of understory young trees, which further
signifies the existence of open gap spaces [12,75], possibly resulting from either canopy
shrinkages or/and foliage reduction that enabled ALS pulses to reach understory, as the
foliage density and compaction influences the light absorption in the canopies [55,76].
Conversely, this spread out in the vertical profile was not seen for decay Levels 1, 4, and 5.
This could be understandable for Levels 4 and 5 because these were severely decayed
plots, without understory trees, to the extent that almost all the trees had turned into snags
and stumps (with virtually no foliage as most parts of the ground were exposed to the
sky (Figure 2), another reason why 66.5% and 88.5% of the ALS point clouds, respectively,
returned as ground points, Table 1). Thus, despite the vast open gap space [12,75] available
for the ALS pulses to reach the understory, spread out would not be seen in the profile.
However, Level 1 should have some understory trees, yet this was not detected because
the ALS pulses were unable to reach understory levels (closed gap spaces [12,75]) due to
the closed canopy which rendered the pulses backscattered from the higher canopies.

Furthermore, the vertical profiles of the five decay Levels show a consistent decline
both in the LAD estimates and height, indicating a strong correlation. The apparent
inference in the decline in canopy height is breakages (i.e., broken tops or broken stems),
especially for Levels 4 and 5. While this finding confirms the plausibility of using ALS
height returns only, for examining above-ground biomass and carbon dynamics [77], it
is equally significant for identifying and mapping forest areas that have large gaps for
forest resource management and planning (e.g., decay Levels 4 and 5 could serve as fuels),
especially in cloudy forest regions with limited access.

4.2. Modeling Plot Decay Levels Significantly Explained the Decay Trend and the Relationship
between VAI, GF, and L-Moments

While assessing the relationships between VAI, GF, and L-moments ratio, we modeled
the plot decay levels from ALS height returns using bivariate linear regressions. All the
LAIs computed at each stratum (2 m thickness in height) of a plot summed up constituted
the VAI whereas GF was the average canopy gap fraction. The third L-moment ratio (T3),
also known to measure the skewness, was the ratio of the third to second L-moment (L3/L2).
The relationship between VAI and GF (Figure 6) and VAI and T3 (Figure 7) resulted in



Remote Sens. 2024, 16, 2824 15 of 19

linear models that significantly explained the dynamics of the five plot decay levels with a
negative slope from Level 5 to Level 1. While 96% of the variation in GF was explained by
the VAI with a significant negative association (VAI (slope) = −0.047, (p < 0.001)), 92% of
the variation in T3 was explained by the VAI, also with a significant negative association
(VAI (slope) = −0.50, (p < 0.001)); both at 95% confidence interval. Tables 2 and 3 display
the coefficient values (intercepts and slopes) of the regressions (first and second models
respectively), with their confidence intervals and p−values. Findings from both models
show a clear indication of the declining trend of plot decay levels through the regression
with strong correlations achieving coefficients of determination reaching R2 = 0.96 and
R2 = 0.92 for the first and second models respectively. Thus, both models can be used to
predict forest plot decay levels, based on plot VAIs. Furthermore, with the VAI, the first
model can equally predict the GF, while the second model also predicts the skewness of the
respective decayed plots. The practical implication of these findings is that, especially in
forests that have limited access and in cloudy weather conditions, forest managers can use
ALS height returns to model forest plot decay levels. This leads to the understanding of
forest growth dynamics for effective forest management.

4.3. Rule-Based Methods Classify Healthy and Deadwood Plots

ALS-derived L-moments directly detect forest structural features [71,78]. Val-
buena et al. [71] proposed two rules; the first rule (Lcv = 0.5) was for classifying even-size
forest areas (Lcv < 0.5) and areas dominated by great tree size inequality (Lcv > 0.5), whereas
the second rule (Lskew = 0) was for classifying open canopy forest areas (Lskew > 0) and
closed canopy forest areas (Lskew < 0). Cognizant of the fact that the effect of tree decay
results in biophysical changes in tree canopy structure and sizes (due to defoliation, broken
tops and stems, broken twigs and branches, and shrinkages), we hypothesized that ALS-
derived L-moments can directly classify forest plot decay levels to serve as a convenient
approach to understanding forest growth dynamics in the absence of field data. This is
due to the changes that arise over time resulting from structural deficiency as the dead
trees continuously decay (Wong et al. [44]), which equally explains the fact that the varia-
tions in plot decay levels result in great tree size inequalities. Consequently, we tested the
two rules for classifying forest plot decay levels from ALS height return using the
derived L-moments.

On one hand, our findings (Figure 8a) showed that the first rule classified the most
severely decayed plots (Levels 3, 4, and 5) as areas of great size inequality (Lcv > 0.5) while
the healthy and early dead plots (Levels 1 and 2 respectively) were classified as even-sized
areas (Lcv < 0.5). This indicates that the first rule has the potential to classify deadwood
plots from plots constituting declining (early dead plots) and healthy trees. It is worth
noting that, although decay Level 2 is classified as even-sized areas, it is closer to Level 3.
While this indicates a small difference between Level 2 and 3, it further confirms that the
Level 2 plots are early-stage dead trees, which may have a slight structural deficiency
contrary to Levels 3, 4, and 5. This also demonstrates the reason why it is sometimes
challenging to differentiate between Level 2 and 3, and 1 and 2 from only ALS point
clouds; thus, showing the necessity of the sensor combination in assessing decay levels
(Wong et al., [44].) Moreover, the findings indicate that there exists a dependency between
the L1 (mean ALS height) and the L2 as the declining trend in decay levels is demonstrated
in Figure 8a, which equally reflects the decline in tree heights from decay Levels 1 to 5. This
further implies that ALS-derived L-moments, especially the relationship between L1 and
L2, have the potential for modeling forest plot decay levels.

On the other hand, the second rule (Lskew = 0) classified decay Level 1 as closed canopy
areas (Lskew < 0), while Levels 2–5 are classified as open canopy areas (Lskew > 0), Figure 8b.
It is noteworthy that positive skewness is seen for all dead plots, which have at least
some structural deficiency (resulting in open canopy and increasing GF), while negative
skewness is seen for structurally healthy plots (dense and closed canopy). This corroborates
the concept of forest plot decay levels and their effects. For example, dense forests with
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healthy trees (Level 1) have closed canopies. However, when trees die and begin to decay,
gaps begin to widen in proportion to the degree of decay. Thus, the distribution of ALS
height returns through the second rule has potential for discriminating healthy plots (where
ALS pulses are unable to reach understory as they are mostly backscattered from the higher
canopy due to closeness; these are forest areas termed as euphotic zone ([12,75]) from
decayed plot (where ALS pulses mostly reach understory canopy and ground due to
increasing GF and openness; these areas are termed as the oligophotic zone ([12,75]).

These findings show that the derived L-moment rule-based methods look promising,
especially for classifying healthy and deadwood plots of varying decay levels directly
from ALS height returns. This can be a simple and convenient approach forest managers
can adopt to assess and understand forest growth dynamics for effective management.
Moreover, forest managers can exploit this approach to map out gap areas for managing
forest resources. The approach can equally be significant for assessing forest biomass,
carbon stock, and biodiversity.

4.4. Limitations

Generally, despite our anticipation that the proposed method in this study can have
significant practical value for effective forest management and planning of resources,
we equally must acknowledge the limitation of few experimental data available at our
disposal. Thus, we tried to make up for this limitation by varying the sample plot size.
Notwithstanding, this study can serve as a basis for improved and advanced research in
the future.

5. Conclusions

In this study, we proposed a practically significant method for understanding forest
growth dynamics for effective planning and management of forest resources. We charac-
terized and modeled five decay levels of forest plots in the BFNP based on LAI, GF, and
L-moments from ALS height returns only through assessments of point cloud dispersions
and skewness. First, we characterized forest plot decay levels by estimating their LAD
vertical profiles. Findings from the profiles show a clear decline in LAD and heights from
Level 1 to 5. Also, we modeled the plot decay levels while assessing the relationship
between VAI and GF as well as VAI and T3 (third L-moment ratio) on respective plots
with bivariate regression. The models significantly explained the declining trend in de-
cays with coefficients of determination reaching R2 = 0.96 (GF on VAI) and R2 = 0.92 (T3
on VAI) at a 95% confidence interval. Furthermore, we tested two rule-based methods
(Lcv = 0.5 and Lskew = 0) proposed in the literature to classify plot decay levels into
two groups: healthy plots (Level 1) and deadwood plots (Level 2–5). However, we found
that while the second rule (Lskew = 0) works perfectly, the first rule categorized the healthy
and early dead plots in one category, although there was a wide distance between the
two as the early dead plots were closer to the threshold boundary. These findings are
very significant for understanding the decay levels and forest growth dynamics. This can
equally serve as a convenient, cost-effective approach for forest managers to assess and
estimate the biomass, carbon stock, and biodiversity from ALS height returns without field
data. Moreover, forest managers can exploit the approach for mapping forest gaps for
planning and managing forest resources for effective forest management and preservation,
especially in cloudy temperate forest regions having limited access.
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